Universal Mathematics: All Life on Earth Is Bound by One Spooky Algorithm | Geoffrey West

Big Think
Big Think
141.6 هزار بار بازدید - 7 سال پیش - Universal Mathematics: All Life on
Universal Mathematics: All Life on Earth Is Bound by One Spooky Algorithm
New videos DAILY: https://bigth.ink
Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge
----------------------------------------------------------------------------------
Are we all connected? Mathematically, yes. It might seem like a stretch, but all living organisms on earth are connected by a unified theory. The more into the (metaphor alert) nuts and bolts of it all, the more science is finding just how connected we all are by way of energy and resources being supplied to cells—and by a methodology known as quarter scaling. The larger something is the longer it lives. Let's say there's a dog that is 500 times bigger than a mouse: in essence, we can then estimate that the dog's lifespan will be about 125 times greater than the mouse. An elephant's heart beats a lot slower than a human's heart, but our hearts beat slower than a mouse and a dog. It's all interconnected!
----------------------------------------------------------------------------------
GEOFFREY WEST:

Geoffrey West is a theoretical physicist whose primary interests have been in fundamental questions in physics and biology. West is a Senior Fellow at Los Alamos National Laboratory and a distinguished professor at the Sante Fe Institute, where he served as the president from 2005-2009. In 2006 he was named to Time’s list of “The 100 Most Influential People in the World.”

Geoffrey West is the author of Scale.
----------------------------------------------------------------------------------
TRANSCRIPT:

GEOFFREY WEST: So I think it’s one of the more remarkable properties of life actually, but just taking mammals: that the largest mammal, the whale, is—in terms of measurable quantities of its physiology and its life history—is actually a scaled up version of the smallest mammal which is actually the shrew, but a mouse is very close to that.

And everything in between, that they are scaled version of one another and in a systematic predictable way to sort of 80 percent or 90 percent level. So the kinds of things that you might measure might be as mundane as the length of the aorta, which is the first tube coming out of your heart, or it could be something as sophisticated and complex as how long each one of these mammals, for example, is going to live or how long it takes to mature.

So all of these things scale in a very predictable way and they scale in a way that’s nonlinear. So even though it’s simple it’s highly nonlinear, and that can be expressed in the following way.

So perhaps the most well known of these is the scaling of metabolic rate. And metabolic rate is maybe the most fundamental quantity of life because metabolic rate simply means how much energy or just how much food does an animal need to eat each day in order to stay alive. And everybody’s used to that and is familiar with that. It’s sort of roughly 2,000 food calories a day for a human being. So you can ask “what is that for different mammals?” and what you find is that they’re related to one another in a very simple way despite the fact that metabolism is maybe the most complex physical chemical process in the universe. It’s phenomenal because metabolism is taking essentially almost inorganic, something that’s inorganic an making it into life.

And so here’s this extraordinary complex process and yet it scales in a very simple way. And you can express it in English, it can be expressed quite precisely in a very simple mathematical equation but in English it’s—roughly speaking—that every time you double the size of an organism from say two grams to four grams or from 20 grams to 40 grams or 20 kilograms to 40 kilograms or whatever and just doubling anywhere.

Instead of what you might naively expect—double the size, you double the number of cells roughly speaking; therefore, you would expect to double the amount of energy, the amount of metabolic energy you need to keep that organism alive because you have twice as many cells—Quite the contrary you don’t need twice as much. Systematically you only need roughly speaking 75 percent as much. So there’s this kind of systematic 25 percent, one-quarter “savings.”

And it turns out that anything else you measure as I mentioned a moment ago scales in a similar way with this sort of 25 percent role occurring in some interesting way.

So, for example, if you take mammals: we have beating hearts, we have a circulatory system with a beating heart. So every time you double the size there’s a systematic decrease in heartrate as most people are familiar with. An elephant’s heart beats much slower than ours and ours beats much slower than a dog’s or a mouse’s, for example. And that also obeys this kind of quarter-power scaling, so in a very systematic way we see this repet...

For the full transcript, check out https://bigthink.com/videos/geoffrey-...
7 سال پیش در تاریخ 1396/03/21 منتشر شده است.
141,676 بـار بازدید شده
... بیشتر